Wednesday, January 20, 2010



Numerical simulations
of relativistic shocks

Anatoly Spitkovsky
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outline

® Relativistic vs Non-relativistic shocks

® Shock structure
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Problem setup

Y =15 Y :15
> <
upSstream downstream
., <Shock | —
c | c
c/3 (3D) or ¢/2(2D) ¢/3(3D) or c/2(2D)
“Shock” is a jump in density & velocity
Use reflecting wall to initialize a shock <

Simulation is in the fownstream frame.
We verified that the wall plays no adverse effect by comparing with a two-shell collision.

Many groups are working on PIC simultaions:
Silva et al, Hoshino et al, Nishikawa et al, Nordlund et al.
All groups agree on main points, though run times and simulation sizes differ.
Key Is running simulations long enough to see “steady” shocks
Largest runs go for 10000 wyp'; sizes up to 2002x2000 skins; 4e10 particles
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what is a shock!?

® |Jump in density, temperature and average
velocity.

e NOT EVERY JUMP IS A SHOCK!
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what is a shock!?

Forward

/ shock

Contact
discontinuity

(Density)

Reverse

shock \
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Relativistic pair shocks
Establishment of a self-propagating shock structure for c=0 min max
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Relativistic pair shocks
Establishment of a self-propagating shock structure for c=0 min max
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Unmagnetized pair
shock:

shock Is driven by
returning particle
orecursor (CR!)

Steady counterstreaming
, leads to self-replicating shock
) returning : Structure

streagin.
- . -

X- pX momentum
space

Long term 2D simulation

X- py momentum
space

3000 4500 0000 0000
/o Shock structure for c=0 (AS '08)
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Unmagnetized pair shock:

downstream spectrum: development of nonthermal tail!

Nonthermal tail deveolps, N(E)~E-%4. Nonthermal contribution is 1% by
number, ~10% by energy. Now independently confirmed (Silva et al.)

Early signature of this process is seen in the 3D data as well.
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A.S. 2008, Apd, 682, L5 also seen by Martins et al 09
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Unmagnetized pair shock: particle trajectories

» t=2695.50
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Transition between magnetized and unmagnetized shocks:

o=0

Magnetic
energy

Density
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ransition between magnetized and unmagnetized shocks:

B field
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ransition between magnetized and unmagnetized shocks:

B field

Acceleration: 0<70 produce power laws, 6>70-3just thermalize
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Can magnetized pair shocks accelerate particles?

Investigate the dependence of acceleration on the angle between the background field and
the shock normal (Sironi & AS 09): 0=0.1, y=15; Find p-law index near -2.3

10° = '
10* E \
10° :

, :

Bsw/cosO < 1 -- subluminal

Self-turbulence is not enough to
exceed superluminal constraint 1000
Y

Observe transition between subluminal and superluminal shocks.

In upstream frame need: Shock drift acceleration is important near transition.

Hupstream < 320/7

for acceleration Perpendicular shocks are poor accelerators.
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Returning particles and upstream waves

O degrees, subluminal 45 degrees, superluminal

Iurpmg parttcles
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Upstream oblique waves are caused by returning particles which are scattered by these waves
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Can magnetized e-ion shocks accelerate particles?

Investigate the dependence of acceleration on the angle between the background field and
the shock normal (Sironi & AS in prep): 0=0.1, y=15, mass ratio 16.
2 L=4500: 1ons

vdN(v)/dy

10 100 1000

w L=4500: electrons

Bsw/cosB < 1 -- subluminal

Self-turbulence is not enough to
exceed superluminal constraint

Superluminal constraint works even for
electron-ion plasmas (relativistic)

Perpendicular shocks are poor accelerators.

Electron heating -- 10-50% of ion energy,
up to 25% of flow energy in ion tail

Electrons -- 2-10%
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—lectron-ion shocks: growth of upstream waves
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3 f|e|d amp”ficaﬂOﬂ Bell’'s nonresonant CR instability

CR accelerating shocks can cause a w0ok! 3. Tes .t e, jreturning
current of protons to propagate through P TR e e R ;
the upstream. Bell (04, 05) found an MHD [
instability of CRs flying through "
magnetized plasma.

The interaction is honresonant at
wavelength << Larmor radius of CRs.

We simulated this instability with PIC in
2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (Va~

Vacr), OF CR deflection; for SNR conditions Cosmic ray current Jer=eNeVsh
expect ~10 field increase.
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5 field amplification

CR accelerating shocks can cause a
current of protons to propagate through
the upstream. Bell (04, 05) found an MHD
instability of CRs flying through
magnetized plasma.

The interaction is nonresonant at
wavelength << Larmor radius of CRs.

We simulated this instability with PIC in
2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (Va~
Vacr), Or CR deflection; for SNR conditions
expect ~10 field increase.
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kmax C=2ﬂ:JCF/BO
Ymax= kmaxVA|fven ,O

Need magnetized plasma: Wei>>Ymax
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3 f|e|d ampﬁﬂca_ti()ﬂ: SD runs Bell’s nonresonant CR instability

(Riquelme and A.S. 2009 ApJ)
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Field amplification of ~10 in SNRs can be due to Bell’s instability
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Field growth

001 0.1

e r—— we see growth of field energy and scale
with time near shock, and slower decay

downstream at 10* skindepths
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Opportunities/challenges

Large scale simulations produce collisionless shocks and
particle acceleration from first principles.

Dependence on field orientation and strength is now more
understood -- strong constraints on astrophysical scenarios

New observations are driving this field: Fermi, HESS, CRs
are constraining the shock physics and back-reaction on ISM.

Experiments: if scales of experiment >> c/wp , R interesting
shocks can be produced.

Simulations of experimental conditions necessary for
Interpretation

Challenge (both experiment and simulations) to have large
enough scales to probe both the shock formation +
subsequent back-reaction beyond transients.
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Simulation issues:

Coupling of small and large scales, perhaps PIC + hybrid
More physics: radiation effects

Effects of upstream turbulence

Effects of self-generated turbulence

Stability and robustness at long time evolution
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